

Welcome to iMSTK documentation!

User Guide

	Introduction

	Setup for Development
	Configuration and Build

	External Dependencies

	Overview of iMSTK
	Elements of a Scene

	Simulation Workflow

	Object Geometry
	Analytical Geometry

	Discrete Geometry

	Rendering
	Render Material System

	Texture Manager

	VTK Backend

	Vulkan Backend

	Lights

	Collision Detection

	Collision Handling

	Physics
	3D Deformable Objects

	Cloth

	Fluids

	Rigid Body Dynamics

	Computational Algebra
	Direct Linear Solvers

	Iterative Linear Solvers

	External Devices

	Audio

	Haptic Rendering

	Miscellaneous Topics
	Object Controllers

	Event Handling

	File Formats

	I/O

	Format Check

	Utilities

	Walk-through Example
	Bibliography

Release Notes

	Releases
	Release 1.0.0

Licensing

	Apache License

[image: image0]

Interactive Medical Simulation Toolkit (iMSTK)

User Documentation

Introduction

iMSTK is a free & open source software toolkit written in C++
that aids rapid prototyping of interactive multi-modal surgical
simulations. It provides a highly modular and easy to use framework that
can be extended and be interfaced with other third-party libraries for
the development of medical simulators without restrictive licenses.

iMSTK supports all major platforms (MacOS, Linux, Windows) with the
ability to build all the dependencies automatically using CMake. Current
features include (a) support for a Vulkan and a VTK rendering backend,
(b) VR support, (c) External tracking device hardware support, (d)
linear and nonlinear FEM and PBD (including fluids), (e) standard
numerical solvers such as Newton, CG, Gauss-Seidel, and (e) continuous
collision detection.

This documentation is designed to provide an overview of iMSTK,
introductory concepts needed to comprehend the framework, its component
modules and how they interact to help build simulations. For
implementational level details of the modules and their classes, please
refer to the code. The chapters that follow will describe details of how
to build iMSTK, elements of the simulation scenario and how these
elements are connected using iMSTK modular architecture followed by
detailed description of each of the major modules. The final chapter
includes a walk-through of the code of an all-inclusive example to help
the readers to quickly build their application.

Setup for Development

iMSTK and its external dependencies can be configured and built from
scratch Cmake to create a super-build on UNIX (MAC, Linux) and Windows
platforms. The instructions below describe this process in detail.

Configuration and Build

CMake should be used to configure the project on every platform. Please
refer to CMake’s official page [https://cmake.org/runningcmake/]
to read about how to configure using CMake.

Linux/MacOSx

Type the following commands from the same location you cloned the

>> mkdir iMSTK_build
>> cd iMSTK_build
>> cmake ../iMSTK # path to source directory
>> make -j4 #to build using *4* cores

This will configure the build in a directory adjacent to the source
directory. To easily change some configuration variables such as CMAKE_BUILD_TYPE, use ccmake instead of cmake.

One can also use Ninja for a faster build instead of Unix Makefiles. To
do so, configure the cmake project with -GNinja

>> cmake -GNinja
>> ../iMSTK
>> ninja

This will checkout, build and link all iMSTK dependencies. When making
changes to iMSTK base source code, you can then build from the
Innerbuild directory.

Windows

Run CMake-GUI and follow the directions described on CMake’s official
page [https://cmake.org/runningcmake/]. You need to choose which
version of Visual Studio that you would like to use when configuring the
project. Make sure to select Microsoft Visual Studio C++ 12 2013 or
later. CMake will generate a iMSTK.sln solution file for Visual Studio
at the top level. Open this file and issue build on all targets, which
will checkout, build and link all iMSTK dependencies. When making
changes to iMSTK base source code, you can then build from the iMSTK.sln
solution file located in the Innerbuild directory.

Note

MVSC 2015 is not yet supported as the dependency libusb 1.0.20 does not support it yet. We will work on supporting MVSC in the near future when libusb 1.0.21 is released.

Options at Configure Time

Phantom Omni Support

To support the Geomagic Touch (formerly Sensable Phantom Omni) haptic
device, follow the steps below:

	Install the OpenHaptics
SDK [https://www.3dsystems.com/haptics-devices/openhaptics] as
well as the device drivers:

	for Windows [https://3dsystems.teamplatform.com/pages/102774?t=r4nk8zvqwa91]

	for Linux [https://3dsystems.teamplatform.com/pages/102863?t=fptvcy2zbkcc]

	Reboot your system.

	Configure your CMake project with the variable iMSTK_USE_OMNI set to ON.

	After configuration, the CMake variable OPENHAPTICS_ROOT_DIR should
be set to the OpenHaptics path on your system.

Vulkan Rendering Backend

To use the Vulkan renderer instead of the default VTK, follow these
steps:

	Download the VulkanSDK [https://vulkan.lunarg.com/]

	Download your GPU vendor’s latest drivers.

	Enable the iMSTK_USE_Vulkan option in CMake.

Note

The examples that depend on this option being on at configure time will not build automatically if this option is not selected.

Building Examples

The examples that demonstrate the features and the usage of iMSTK API
can be optionally build. Set BUILD_EXAMPLES to ON the examples needs to
be built.

Virtual Reality Support

iMSTK can optionally display the render frames to the HMD instead of the
default 2D screen. In order to enable VR via openVR, set
iMSTK_ENABLE_VR to ON.

Audio Support

iMSTK has the ability to play audio streams at runtime. In order to
enable Audio, set iMSTK_ENABLE_AUDIO to ON.

Uncrustify Support

iMSTK follows specific code formatting rules. This is enforced through
Uncrustify [http://uncrustify.sourceforge.net/]. For convenience,
iMSTK provides the option to build uncrustify as a target. To enable
this set iMSTK_USE_UNCRUSTIFY to ON.

External Dependencies

iMSTK builds upon well-established open-source libraries. Below is the
list of iMSTK’s external dependencies and what they are used for in
IMSTK.

	Library

	Usage

	Eigen

	linear algebra (vectors, matrices, basic matrix algebra etc.)

	VRPN

	Interfacing with external hardware devices.

	SFML

	Audio support

	G3log

	Asynchronous logging

	Google Test

	Unit testing

	OpenVR

	HMD-based Virtual reality support

	SCCD

	Continuous collision detection

	Uncrustify

	Enforcing code formatting

	VEGAFem

	Rendering, visualization and filters

	VTK

	Finite element support

Secondary external dependencies include glfw, gli, glm, LibNiFalcon,
Linusb, and PThread.

Overview of iMSTK

Elements of a Scene

In iMSTK, a collection of ‘scene objects’, their interaction graph and
inanimate entities like (lights, camera etc.) form a scene. Scene
objects are defined with internal states (eg: displacements,
temperature) that may be governed by a mathematical law. The interaction
between the scene objects is specified by a collision detection and
collision handling. The interaction laws are encoded in the collision
handling.

Module

A iMSTK module facilitates execution of a set callback function in a
separate thread. Any simulation related logic is executed via one module
or the another. For example, the devices often require a separate thread
for I/O which will be facilitated through the imstkModule class. At any
given instance in time, a module can be in one of the following states:

	STARTING

	RUNNING

	PAUSING

	PAUSED

	TERMINATING

	INACTIVE

the module also allows specifying custom function callbacks that will be
called at the start or end of the execution frame. The examples
demonstrate the usage of these callbacks.

Simulation Manager

The simulation manager is a high-level class that drives the entire
simulation. Some of the functionalities of the simulation manager
include:

	Addition and removal of a scene

	Execution control of a currently active scene: Start, Run, Pause, Reset, End

	Setting active scene

	Adding and remove modules (run in separate threads)

	Starting the renderer

The simulation manager can be configured to run in ‘simulation backend
mode’ where the rendering is disabled.

Scene Manager

The scene manager is a module (which runs in a different thread) that
executes each frame of the simulation in the scene on-demand. Each frame
is triggered by the simulation manager. The simulation workflow
described below is implemented in the runModule() function of the
sceneManager.

Scene Objects

The scene object encapsulates an individual actor that has an internal
state which is governed by a mathematical formulation (force model
described later). The internal state (eg: deformation field,
temperature) exists over a finite geometry; therefore each scene object
contains geometric representations for visual, collision and the
physics modules to utilize. The geometric representations could be the
same or separate (for example one might want to do collisions on coarser
geometric representations while the physics is resolved on a denser
representation) for these three modules. The geometric representation
can be a collection of points with or without connectivity or even a
standard shape.

Geometry Mappers

The consistency between the visual, collision and the physics geometric
representations is maintained using geometry mappers. At any given
simulation frame, all the internal states are updated, collisions are
computed, interactions are resolved and the new states are passed via
mappers to the renderer to update the visuals. iMSTK provides standard
mappers to map for example, displacement from volumetric mesh the
displayed mesh which is a surface. Arbitrary custom mappers can be
defined by the user.

Collision Graph

The interaction graph describes the interaction between the scene
objects. Below is a sample code to describe the interaction between an
elastic body and a rigid sphere using penalty-based collision response
and PointSetToSphere collision detection.

// Create a collision graph
auto graph = scene->getCollisionGraph();
auto pair = graph->addInteractionPair(elastibBody,
 Sphere,
 CollisionDetection::Type::PointSetToSphere,
 CollisionHandling::Type::Penalty,
 CollisionHandling::Type::None);

Note

In cases where both the objects are deformable, collision response can be prescribed both ways. More details on the collision detection and response can be found in their respective sections later.

Inanimate Scene Elements

Background elements of the scene that are not necessarily visible or
affect the simulation are the lights and camera. They are described in
detail in the rendering section.

Simulation Workflow

[image: image1]
The flowchart above shows the brief overview of the simulation workflow.
At any given frame the force vectors and the Jacobian matrices are
computed and passed on to the assembly. The collision detection computes
the intersecting scene objects based on the latest configuration
available from and the collision data is passed to the contact handling
module. Depending on the type of contact handler either the forces or
constraints based are passed to the assembler. The assembled assembles
the discrete set of equations that will be solved by the solver chosen.
Once the solution is obtained the geometry mappers deconstruct this and
update the visual geometries. The mappers further update the physics and
collision mesh representations (if they happen to be different). This is
continued until the user terminates or pauses the simulation.

Object Geometry

iMSTK handles a wide variety of geometric types that will be used for
visual representations of the scene objects, collision computations or
as input domain for physics formulations. The geometry is broadly
classified as (a) Analytic (parameterized) and (b) Discrete geometry.

Analytical Geometry

Analytic geometry represents standard shapes that can be fully specified
few parameters. iMSTK supports the following 3D shapes.

	Sphere: Specified by radius and center

	Cube: Specified by length of the side and the center

	Plane: Specified by normal and any point on a plane

	Capsule: Specified by radius, length (between the centers of end planes of the cylindrical section) and position (of the center of the cylinder)

	Cylinder: Specified by the radius, length and the position (of the center of the cylinder)

The default position is (0,0,0) and the defaulted to unit length along
the cylinder axis. For rendering purposes, the internal representation
of the above shapes is mapped to the VTK data structures.

Discrete Geometry

Discrete geometry is where a shape is represented by a collection of
primitives such as points, triangles, tetrahedron, hexahedron etc. iMSTK
currently supports, point clouds, surface mesh, and unstructured
volumetric meshes composed of tetrahedral primitives.

Surface Mesh

Surface meshes consist of vertices and triangles. The vertices contain
information such as position, normals, UV coordinates, and tangents.
Each triangle contains the index of the three vertices. Surface mesh
normals consider UV seams so that when deformation occurs, the normals
look smooth even when the vertices are duplicated.

Volumetric Mesh

The volumetric mesh is composed of vertices and tetrahedral elements.
The vertices can also hold additional scalar data for visualization
purposes.

Decals (Vulkan only)

This geometry type actually consists of two related classes: decals and
decal pools. A decal a unique object that can project onto
underlying opaque geometry. The projection is along the Z-axis. A
decal pool is a collection decals. Memory is preallocated ahead of
time on the GPU side to support additional decals.

[image: image5]
In terms of how the decals are rendered, decals are instanced and share
the same material. Therefore, materials should only be assigned to the
decal pool, rather than the decal. This makes a decal pool a relatively
heavy object while decals are lightweight. Decals blend to the layer
underneath, inheriting their normals, meaning that normal maps will not
work. Unlike opaque geometry, decals are only rendered once and cannot
cast shadows.

Decals have a projection box that is by default one meter in each
direction. This can be scaled by setting the scale of each decal. Opaque
geometry that intersects this box will have the decal’s material
projected onto it. If the decal is parallel to a surface, then the
projection will look severely stretched. To avoid this, rotate the decal
by a small amount. If the decal is facing the wrong direction, then it
will be invisible.

Rendering

iMSTK rendering is powered by two rendering APIs: VTK (default) and
Vulkan.

Render Material System

A render material holds information on the appearance of an item. This
information includes:

	Textures

	Display modes (such as wireframe)

	Values (such as roughness)

	Shader details

Although a material is a higher level abstraction, it has a large impact
on performance.

The materials properties that are available in iMSTK are described below
along with their definitions:

	Property

	Definition

	Roughness

	VTK: influences how smooth a surface is for Blinn-Phong. This doesn’t have a precise physical meaning.

Vulkan: influences roughness. This value is actually squared to allow for more precision for lower roughness values. This has a precise physical meaning.

	Metalness

	VTK: influences specular color.

Vulkan: has a physical meaning, influencing both the specular color and Fresnel strength.

	SSS

	Vulkan: influences the radius and strength of the subsurface scattering post-processing pass.

	Tessellation

	Vulkan: currently tessellates the mesh

[image: image4]

Texture Manager

The texture manager caches textures already in use. Generally most of
the GPU memory in use by the application will be consumed by textures,
so it’s important to avoid redundantly uploading textures. The texture
manager currently uses multiple parameters to detect redundancy
including file path and texture type. It’s possible for the same image
file to be loaded more than once if it’s used in different ways (e.g.,
using the same image for roughness and albedo). This is by design
because different types of texture can be optimized in different image
formats to save space.

VTK Backend

The VTK backend is provided to allow for advanced visualization features
for debugging and visualization application behavior such as physics.

Vulkan Backend

The Vulkan backend concentrates on photorealistic graphics and uses more
much aggressive/expensive approaches to achieve this goal. Currently,
the Vulkan backend follows concepts from physically-based rendering
(PBR). This doesn’t have a clear definition, but the route taken by the
Vulkan backend consists of:

	Linear color space

	Microfacet specular BRDF with energy conservation

	High dynamic range with filmic tonemapping

	Post processing that operates based on more physical values

Lights

Note

The intensity of the light can exceed 1.0, which gets clamped in the VTK backend but is smoothed in the Vulkan backend due to the tonemapping. Thus, the resulting appearance will be different.

Directional Lights

Directional lights have a direction, an intensity, and a color. In the
Vulkan renderer, they can also cast shadows.

Point Lights

Point lights have a position, an intensity, and a color. Light rays are
calculated coming out from the center of the point light.

Spot Lights

Spot lights are a special case of point lights that also have an angle
cut off along a certain direction.

Image-Based Lighting (Vulkan only)

Image-based lighting (IBL) allows the scene to be illuminated by a
surrounding light source. This can be used in the Vulkan backend. To use
it, a global IBL probe object must be created and assigned to the scene.
The object takes three textures: an irradiance cubemap, a radiance
cubemap, and a BRDF lookup table. The two cubemap textures must be in
DDS format, and should also use high-dynamic range for the best results.
The radiance cubemap in particular should be mipmapped.

Collision Detection

Collision detection (CD) is the process of detecting collision between
two geometrical shapes. The geometrical shapes, as explained earlier,
can be represented as a collection of one or more primitives (eg:
points, lines and triangles). Therefore, the CD determines the collision
between two sets of primitives. The collision data that is produced as a
result of the collisions is passed on to the collision handling module.
Any collision detection algorithm results in one or more of the
following data types:

	VertexTriangleCollisionData

	EdgeEdgeCollisionData

	MeshToAnalyticalCollisionData

	PointTetrahedronCollisionData

	PickingCollisionData

iMSTK currently supports analytical geometry to mesh and inter mesh
collision detection. Continuous collision detection (CCD) is made
available in imstk through selfCCD library. CCD algorithm extends the
collision in time thereby capturing the collisions otherwise missed by
the traditional collision detection algorithms.

Collision Handling

Collision handling determines what needs to be done in the event of
collision. The collision data obtained from the CD module is used to
either compute the response forces or generate constraints that will be
solved along with the internal forces. iMSTK currently supports penalty,
linear projection constraints, PBD collision constraints, virtual
coupling and picking collision handling.

Physics

iMSTK is designed to accommodate varied physics-based formulations that
govern the internal states ascribed to the scene objects. The
architecture is designed in such a way that different physical
modalities such as 3D elastic objects, fluids (such as liquids and
smoke), thin elastic sheets, elastic strings can be accommodated with
the choice of different formulations for each modality.

	Modality

	Formulation

	Usage

	3D Elastic object

	FE

SPH

Meshless

	Tissue

Generic elastic solids

	Fluids

	Finite Volume

SPH

PBD

	Blood

Smoke

	Elastic objects in 3D with 2D topology

	PBD

FE

	Thin tissue layers

Cloth-like objects in skill trainers

	Elastic objects 3D with 1D topology

	PBD

FE

	Suture thread

	Other: Heat diffusion, electric potential

	FE

	Use of energy in surgery

The table above lists various modalities,]physics based formulations
that help realized them and their potential usage in medical
simulations. While the architecture itself allows extension to most
modalities and their formulations, only a subset of them are currently
available in iMSTK.

In iMSTK, the partial differential equations that describes the
evolution of the physical quantities both in space and time are modeled
using dynamicalModel class. The dynamical model is composed of the
internal force model and the time stepping scheme which are designed
to take in the current internal states and produce force (analogous)
vector and Jacobian matrices to be used by the solvers.

3D Deformable Objects

iMSTK supports elastic solids both using finite element (FE) and PBD. FE
support is only limited to tetrahedral elements while the PBD
formulation is agnostic to the underlying mesh.

auto dynaModel = std::make_shared<FEMDeformableBodyModel>();
dynaModel->configure(iMSTK_DATA_ROOT"/asianDragon/asianDragon.config");
dynaModel->setTimeStepSizeType(TimeSteppingType::realTime);
dynaModel->setModelGeometry(volTetMesh);

// Create and add Backward Euler time integrator
auto timeIntegrator = std::make_shared<BackwardEuler>(0.001);

dynaModel->setTimeIntegrator(timeIntegrator);

FE dynamical model can be configured by using an external configuration
file. The configuration file specifies (a) an external file listing the
IDs of the nodes that are fixed, (b) density, (c) Damping coefficients,
(d) elastic modulus, (e) Poisson’s ratio, (f) the choice of FE
formulation available. The formulation that are available are (i) Linear
(ii) Co-rotation (iii) invertable (iv) Saint-Venant Kirchhoff. Currently
backward Euler is the only time stepping that is available in iMSTK.

Below is a sample code that shows the configuration of an elastic object
with PBD formulation.

auto deformableObj = std::make_shared<PbdObject>("Beam");
auto pbdModel = std::make_shared<PbdModel>();
pbdModel->setModelGeometry(volTetMesh);
pbdModel->configure(/*Number of Constraints*/ 1,
 /*Constraint configuration*/ "FEM StVk 100.0 0.3",
 /*Mass*/ 1.0,
 /*Gravity*/ "0 -9.8 0",
 /*TimeStep*/ 0.01,
 /*FixedPoint*/ "51 127 178",
 /*NumberOfIterationInConstraintSolver*/ 5);

Note that unlike FE, for the case of PBD formulation, the choice of time
stepping scheme and solver is restricted in choice resulting in a
compact API to prescribe the entirety of the object configuration.

Cloth

Currently iMSTK supports the thin elastic sheets like cloth via PBD
formulation which are governed by distance and dihedral constraints.
The code below demonstrates the initialization of the PbdModel and its
configuration.

auto deformableObj = std::make_shared<PbdObject>("Cloth");
auto pbdModel = std::make_shared<PbdModel>();
pbdModel->setModelGeometry(surfMesh);
pbdModel->configure(/*Number of constraints*/ 2,
 /*Constraint configuration*/ "Distance 0.1",
 /*Constraint configuration*/ "Dihedral 0.001",
 /*Mass*/ 1.0,
 /*Gravity*/ "0 -9.8 0",
 /*TimeStep*/ 0.03,
 /*FixedPoint*/ "1 2 3 4 5 6 7 8 9 10 11",
 /*NumberOfIterationInConstraintSolver*/ 5);
deformableObj->setDynamicalModel(pbdModel);
deformableObj->setVisualGeometry(surfMesh);
deformableObj->setPhysicsGeometry(surfMesh);

The dihedral constraints require that the mesh supplied is a surface
mesh. Note that for the PBD formulation the number of iterations of the
solver can determine the eventual stiffness exhibited by the cloth.

Fluids

Fluids (in this case liquids) are supported in iMSTK via PBD. Constant
density constraints are solved within the PBD solution framework in
order to achieve the fluid flow. The formulation operates on a set of
points.

auto deformableObj = std::make_shared<PbdObject>("Dragon");
deformableObj->setVisualGeometry(fluidMesh);
deformableObj->setCollidingGeometry(fluidMesh);
deformableObj->setPhysicsGeometry(fluidMesh);
auto pbdModel = std::make_shared<PbdModel>();
pbdModel->setModelGeometry(fluidMesh);
pbdModel->configure(/*Number of Constraints*/ 1,
 /*Constraint configuration*/ "ConstantDensity 1.0 0.3",
 /*Mass*/ 1.0,
 /*Gravity*/ "0 -9.8 0",
 /*TimeStep*/ 0.005,
 /*FixedPoint*/ "",
 /*NumberOfIterationInConstraintSolver*/ 2,
 /*Proximity*/ 0.1,
 /*Contact stiffness*/ 1.0);
deformableObj->setDynamicalModel(pbdModel);

Rigid Body Dynamics

The rigid body dynamics is made available in iMSTK through ODE [https://www.ode.org/]. Below is the code to configure the rigid body
dynamical model and assign it to an object described in 3D by a surface
geometry.

auto rigidObject = std::make_shared<RigidObject>("RigidObject");
rigidObject->setVisualGeometry(surfaceMesh);
rigidObject->setCollidingGeometry(surfaceMesh);
rigidObject->setPhysicsGeometry(surfaceMesh);
auto rigidBodyModel = std::make_shared<RigidBodyModel>();
rigidBodyModel->configure(false, surfaceMesh, 1.0);
rigidObject->setDynamicalModel(rigidBodyModel);
scene->addSceneObject(rigidObject);

Computational Algebra

Direct Linear Solvers

iMSTK provides interface to all the direct solvers (based on dense and
sparse matrices) that Eigen provide. They are: (a) LU factorization, (b)
LDLT, (c) QR factorization, (d) Cholesky factorization.

Iterative Linear Solvers

iMSTK also provides access to Eigen’s iterative solvers like Conjugate
Gradient and Gauss Seidel. In addition, the following custom solvers are
available:

	Modified conjugate gradient (MCG): Solves linear system of
equations with the symmetric positive definite system matrix along
with orthogonal linear projection constraints [mcg].

	Modified Gauss-Seidel: Similar to modified MCG but solves the
linear system by projecting the constraints node-wise at each
iteration.

	PBD solver: Position based dynamics [pbd] formulation generates a
list of heterogeneous non-linear set of constraints that need to be
solved using nonlinear Gauss-Seidel. PBD solver implements this
solution.

External Devices

Most surgical simulators require the users to interact with the software
using a hardware interface. For this purpose, iMSTK uses VRPN library
[vrpn] to interface with wide number of hardware devices. Currently,
iMSTK supports a subset of these devices, specifically, Novint Falcon,
Geomagic Touch, OSVR, Arduino, 3D Connexion Navigator and 3D Connexion
Space Explorer.

Audio

Simulation of some surgical scenarios require reproduction of the sounds
produced during surgery. iMSTK provides the capability to do so via SFML
library [sfml]. Features include ability to configure the position of
the sound source, position of the listener, attenuation coefficients,
sound pitch. Please refer to audio example for details.

Note

Currently, in order to enable the audio capability, iMSTK_AUDIO_ENABLED has to be set to ON at CMake configure time.

Haptic Rendering

Many medical simulations involve the surgeon feeling the force feedback
from the organs through the surgical tools. The ability to allow for
algorithms to reproduce this is crucial for the framework. iMSTK
currently supports GeoMagic Touch and Novint Falcon devices for force
rendering.

	[image: image2]

GeoMagic Touch

	[image: image3]

Novint Falcon

An example code on how to instantiate a haptic device is shown below

// Create Device Client
auto client = std::make_shared<HDAPIDeviceClient>(“Phantom1”);

// Create Device Server
auto server = std::make_shared<HDAPIDeviceServer>();
server->addDeviceClient(client);
sdk->addModule(server);

Miscellaneous Topics

Object Controllers

The scene objects in the scene can be controlled in real-time by the
user through user inputs such as keyboard inputs or movement of the end
effector of one of the supported devices. This feature becomes handy for
surgical scenarios where the surgical tools are controlled by the user
movements.

imstkSceneObject controller class implements this feature. Given a
scene object and the device tracker, object control can be instantiated
by the following statement

auto controller = std::make_shared<SceneObjectController>(object, trackCtrl);
scene->addObjectController(controller);

At runtime, the scene object’s pose (position and orientation) will be
set to that of the device tracker. In addition, imstk provides a utility
class for two-jawed laparoscopic tool. Its usage can be found in
LaparoscopicToolController example. In addition, a DummyClient class
allows for external program to provide the updated pose. This is
especially useful when imstk is used as an external library where the
main program handles the device control.

Event Handling

Currently, the events are handled in imstk using three different
mechanisms which will be unified in the future. Standard key press and
mouse events are handled in iMSTK via VTK’s interactor style. Currently
pan-zoom-rotate via input from the mouse is achieved through this
mechanism. Below is the example of setting a custom callback linked to
press of a key

.. // Create a call back on key press of 'b' to take the screen shot"
viewer->setOnCharFunction('b', [&](InteractorStyle* c) -> bool
{
 screenShotUtility->saveScreenShot();
 return false;
});

Any event triggered by non-standard external devices (eg: foot pedal) is
implemented in collision handling or via lambda mechanism of the imstk
Module.

File Formats

iMSTK handles a range of file formats for various types of media.

	Surface/Volumetric Meshes: .fbx, .dae, .obj, .stl, .3ds, .ply, .vtk, .vtu

	Texture Formats: .png, .jpg, .bmp, .dds (for Vulkan cubemaps)

	Configuration Files: .config (from vega)

	Misc.: .bou (boundary condition files)

I/O

The file I/O is handled by MeshIO module. Any file format can be loaded
using a simple call shown below.

auto objMesh = MeshIO::read(iMSTK_DATA_ROOT"/asianDragon/asianDragon.obj");
auto plyMesh = MeshIO::read(iMSTK_DATA_ROOT"/cube/cube.ply");
auto stlMesh = MeshIO::read(iMSTK_DATA_ROOT"/cube/cube.stl");
auto vtkMesh = MeshIO::read(iMSTK_DATA_ROOT"/cube/cube.vtk");
auto vegaMesh = MeshIO::read(iMSTK_DATA_ROOT"/cube/cube.veg");

Please refer to MeshIOExample for more details on the usage. Currently
imstk do not support file output.

Format Check

iMSTK has a set of guidelines for code style formatting and is enfored
automatically using uncrustify external library. The check for the
code style is embedded on the unit tests. However, in order to make it
convenient for the developed, uncrustify_Run project get shipped and
build at the time of building iMSTK. Running the executable from the
project will modify the code to enforce the code style.

Utilities

Imstk captures commonly used code patterns inside the utilities in order
to reduce the amount of code in the application and to quickly create a
working application.

API utilities

The namespace imstk::APIUtilities contains utility functions that allows
for quick creation and configuring of scene objects.

createVisualAnalyticalSceneObject(imstk::Geometry::Type type,
 std::shared_ptr<imstk::Scene> scene,
 const std::string objName,
 const double scale = 1.,
 const imstk::Vec3d t(0.,0.,0.));

Above is a declaration of a utility function that allows creation and do
initial transform of any analytical object (that is visual only) in one
call. Additional utilities include (a) creation of a colliding scene
object that is represented by analytic geometry, (b) an utility to
create a nonlinear system, and (c) an utility to print the framerate of
the simulation into the standard output window.

More utilities will be added in the future when different usage patterns
are identified.

Walk-through Example

This chapter walks through an example scene where a tool controlled by
the user through the use of a haptic device interacts with a deformable
object (finite element based).

Step 1: Instantiating a simulation manager and setting up the scene

auto sdk = std::make_shared<SimulationManager>();
auto scene = sdk->createNewScene("LiverToolInteraction");
scene->getCamera()->setPosition(0, 2.0, 40.0);

Step 2: Loading model data from a file

auto tetMesh =
imstk::MeshIO::read(iMSTK_DATA_ROOT"/oneTet/oneTet.veg");

if (!tetMesh)
{
 (WARNING) << "Could not read mesh from file.";
 return 1;
}

Step 3: Extracting the surface mesh that is needed for rendering

auto surfMesh = std::make_shared<imstk::SurfaceMesh>();
auto volTetMesh = std::dynamic_pointer_cast<imstk::TetrahedralMesh>(tetMesh);

if (!volTetMesh)
{
 LOG(WARNING) << "Dynamic pointer cast from imstk::Mesh to
 imstk::TetrahedralMesh failed!";

 return 1;
}

volTetMesh->extractSurfaceMesh(surfMesh);

Step 4: Creating a mapping between the volume and surface mesh

auto oneToOneNodalMap = std::make_shared<imstk::OneToOneMap>();
oneToOneNodalMap->setMaster(tetMesh);
oneToOneNodalMap->setSlave(surfMesh);
oneToOneNodalMap->compute();

Step 5: Setting up the dynamic model that will be used in the scene

auto dynaModel = std::make_shared<FEMDeformableBodyModel>();
dynaModel->configure(iMSTK_DATA_ROOT"/oneTet/oneTet.config");
dynaModel->initialize(volTetMesh);

// Create and add Backward Euler time integrator
auto timeIntegrator = std::make_shared<BackwardEuler>(0.001);

dynaModel->setTimeIntegrator(timeIntegrator);

Step 6: Creating a deformable object and adding it to the scene

auto deformableObj = std::make_shared<DeformableObject>("Dragon");
deformableObj->setVisualGeometry(surfMesh);
deformableObj->setPhysicsGeometry(volTetMesh);
deformableObj->setPhysicsToVisualMap(oneToOneNodalMap); //assign the computed map
deformableObj->setDynamicalModel(dynaModel);
deformableObj->initialize();
scene->addSceneObject(deformableObj);

Step 7: Creating a nonlinear system

auto nlSystem = std::make_shared<NonLinearSystem>(dynaModel->getFunction(),
 dynaModel->getFunctionGradient());

std::vector<LinearProjectionConstraint> projList;

for (auto i : dynaModel->getFixNodeIds())
{
 auto s = LinearProjectionConstraint(i, false);
 s.setProjectorToDirichlet(i);
 s.setValue(Vec3d(0.001, 0, 0));
 projList.push_back(s);
}

nlSystem->setLinearProjectors(projList);
nlSystem->setUnknownVector(dynaModel->getUnknownVec());
nlSystem->setUpdateFunction(dynaModel->getUpdateFunction());
nlSystem->setUpdatePreviousStatesFunction(dynaModel->getUpdatePrevStateFunction());

Step 8: Creating a linear solver and adding it to the nonlinear system

// create a linear solver
auto cgLinSolver = std::make\shared<ConjugateGradient>();

// create a non-linear solver and add to the scene
auto nlSolver = std::make\shared<NewtonSolver>();

nlSolver->setLinearSolver(cgLinSolver);
nlSolver->setSystem(nlSystem);
//nlSolver->setToFullyImplicit();
scene->addNonlinearSolver(nlSolver);

Step 9: Setting up the haptics interface

// Device clients
auto client = std::make_shared<imstk::HDAPIDeviceClient>("Default Device");

// Device Server
auto server = std::make_shared<imstk::HDAPIDeviceServer>();

server->addDeviceClient(client);

sdk->addModule(server);

Step 10: Creating tool-related scene objects and adding them to the scene

// Load tool mesh from a file
auto pivot = apiutils::createAndAddVisualSceneObject(scene,
 iMSTK_DATA_ROOT"/laptool/pivot.obj",
 "pivot");

// Or analytical object
auto sphere0Obj = apiutils::createCollidingAnalyticalSceneObject(imstk::Geometry::Type::Sphere,
 scene,
 "Sphere0",
 3,
 Vec3d(1, 0.5, 0));
auto trackingCtrl = std::make_shared<imstk::DeviceTracker>(client);

auto lapToolController = std::make_shared<imstk::SceneObjectController>(sphere0Obj,
 trackingCtrl);

scene->addObjectController(lapToolController);

Step 11: Creating the collision interaction graph

scene->getCollisionGraph()->addInteractionPair(deformableObj,
 sphere0Obj,
 CollisionDetection::Type::MeshToSphere,
 CollisionHandling::Type::Penalty,
 CollisionHandling::Type::None);

Step 12: Setting up camera parameters in the scene (if necessary)

// Set Camera configuration
auto cam = scene->getCamera();

cam->setPosition(imstk::Vec3d(0, 20, 20));
cam->setFocalPoint(imstk::Vec3d(0, 0, 0));

Step 13: Running the simulation

sdk->setCurrentScene(scene);
sdk->startSimulation(true);

Bibliography

	mcg

	Uri M. Ascher and Eddy Boxerman. 2003. On the modified
conjugate gradient method in cloth simulation. Vis. Comput. 19, 7-8
(December 2003), 526-531.

	pbd

	Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John
Ratcliff. 2007. Position based dynamics. J. Vis. Comun. Image
Represent. 18, 2 (April 2007), 109-118.

	vrpn

	Russell M. Taylor, II, Thomas C. Hudson, Adam Seeger, Hans Weber,
Jeffrey Juliano, and Aron T. Helser. 2001. VRPN: a device-independent,
network-transparent VR peripheral system. In Proceedings of the ACM
symposium on Virtual reality software and technology (VRST ‘01). ACM,
New York, NY, USA, 55-61.

	sfml

	Simple and Fast Multimedia Library: https://github.com/SFML/SFML

Releases

Release 1.0.0

Announcement: iMSTK 1.0.0

We are introducing Interactive Medical Simulation Toolkit (iMSTK)-a free & open source software toolkit written in C++ that aids rapid prototyping of interactive multi-modal surgical simulations.

For more information, visit our website: http://www.imstk.org/

Features

	Cross-platform build

	CMake automated superbuild

	Test infrastructure (via google test)

	Continuous Integration

	Scene and simulation management

	Vulkan and VTK rendering backends

	Advanced rendering: Physically based rendering, Subsurface scattering, Decals, Shadows,

	Graphical overlays (Vulkan backend only)

	Standard user controls (pause, run, exit, pan-zoom-rotate)

	SteamVR support including (Oculus, HTC Vive (VTK backend only)

	Finite elements (linear, co-rotational, non-linear formulations)

	Position based dynamics

	Penalty and constraint-based collision handling

	Linear solvers: Direct and Iterative matrix solvers

	Non-linear Newton solver

	Collision detection (CCD, Spatial hash based collision, narrow phase queries)

	External device support (VRPN)

	Support for standard mesh input formats (.obj, .dae, .fbx., .stl, .vtk, .vtu, etc.)

	Asynchronous logging (using g3log)

	Audio support

	Haptic rendering (OpenHaptics)

Contributors for this release

Venkata Sreekanth Arikatla,
Alexis Girault,
Nicholas Boris Milef,
Ricardo Ortiz,
Thien Nguyen,
Rachel Clipp,
Mohit Tyagi,
Samantha Horvath,
Jean-Baptiste Vimort,
Sean Radigan,
David Thompson,
Dženan Zukić,
Mayeul Chassagnard,
Tansel Halic,
Hina Shah,
Andinet Enquobahrie,
Hong Li,
Shusil Dangi

Apache License

	Version

	2.0

	Date

	January 2004

	URL

	http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the
copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all other
entities that control, are controlled by, or are under common control with that
entity. For the purposes of this definition, “control” means (i) the power,
direct or indirect, to cause the direction or management of such entity,
whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or
more of the outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising
permissions granted by this License.

“Source” form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation source, and
configuration files.

“Object” form shall mean any form resulting from mechanical transformation
or translation of a Source form, including but not limited to compiled object
code, generated documentation, and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form,
made available under the License, as indicated by a copyright notice that is
included in or attached to the work (an example is provided in the Appendix
below).

“Derivative Works” shall mean any work, whether in Source or Object form,
that is based on (or derived from) the Work and for which the editorial
revisions, annotations, elaborations, or other modifications represent, as a
whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or merely
link (or bind by name) to the interfaces of, the Work and Derivative Works
thereof.

“Contribution” shall mean any work of authorship, including the original
version of the Work and any modifications or additions to that Work or
Derivative Works thereof, that is intentionally submitted to Licensor for
inclusion in the Work by the copyright owner or by an individual or Legal
Entity authorized to submit on behalf of the copyright owner. For the purposes
of this definition, “submitted” means any form of electronic, verbal, or
written communication sent to the Licensor or its representatives, including
but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf
of, the Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise designated in
writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on
behalf of whom a Contribution has been received by Licensor and subsequently
incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the Work and
such Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to make, have
made, use, offer to sell, sell, import, and otherwise transfer the Work, where
such license applies only to those patent claims licensable by such Contributor
that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was
submitted. If You institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work or a
Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License
for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof
in any medium, with or without modifications, and in Source or Object form,
provided that You meet the following conditions:

	You must give any other recipients of the Work or Derivative Works a copy of
this License; and

	You must cause any modified files to carry prominent notices stating that You
changed the files; and

	You must retain, in the Source form of any Derivative Works that You
distribute, all copyright, patent, trademark, and attribution notices from
the Source form of the Work, excluding those notices that do not pertain to
any part of the Derivative Works; and

	If the Work includes a "NOTICE" text file as part of its distribution,
then any Derivative Works that You distribute must include a readable copy of
the attribution notices contained within such NOTICE file, excluding
those notices that do not pertain to any part of the Derivative Works, in at
least one of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or documentation, if
provided along with the Derivative Works; or, within a display generated by
the Derivative Works, if and wherever such third-party notices normally
appear. The contents of the NOTICE file are for informational purposes
only and do not modify the License. You may add Your own attribution notices
within Derivative Works that You distribute, alongside or as an addendum to
the NOTICE text from the Work, provided that such additional attribution
notices cannot be construed as modifying the License. You may add Your own
copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution
of Your modifications, or for any such Derivative Works as a whole, provided
Your use, reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted
for inclusion in the Work by You to the Licensor shall be under the terms and
conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms
of any separate license agreement you may have executed with Licensor regarding
such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and
reproducing the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides
the Work (and each Contributor provides its Contributions) on an “AS IS”
BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR
PURPOSE. You are solely responsible for determining the appropriateness of
using or redistributing the Work and assume any risks associated with Your
exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special, incidental,
or consequential damages of any character arising as a result of this License
or out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction,
or any and all other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

While redistributing the Work or Derivative Works thereof, You may choose to
offer, and charge a fee for, acceptance of support, warranty, indemnity, or
other liability obligations and/or rights consistent with this License.
However, in accepting such obligations, You may act only on Your own behalf and
on Your sole responsibility, not on behalf of any other Contributor, and only
if You agree to indemnify, defend, and hold each Contributor harmless for any
liability incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate
notice, with the fields enclosed by brackets “[]” replaced with your own
identifying information. (Don’t include the brackets!) The text should be
enclosed in the appropriate comment syntax for the file format. We also
recommend that a file or class name and description of purpose be included on
the same “printed page” as the copyright notice for easier identification within
third-party archives.

Copyright 2018 iMSTK

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Index

 _static/comment-bright.png

_images/pbr.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/falcon.png

_images/logo.png
simstk

_images/dataFlow.png
Collision
data

Contact forces,
Jacobians &
constraints

Mesh primitives &
connectivity

: \/ i

Dynamical model

Systems of
equations

Body States

_images/decalsDemo.png

_images/omni.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to iMSTK documentation!

 		
 Introduction

 		
 Setup for Development

 		
 Configuration and Build

 		
 External Dependencies

 		
 Overview of iMSTK

 		
 Elements of a Scene

 		
 Module

 		
 Simulation Manager

 		
 Scene Manager

 		
 Scene Objects

 		
 Geometry Mappers

 		
 Collision Graph

 		
 Inanimate Scene Elements

 		
 Simulation Workflow

 		
 Object Geometry

 		
 Analytical Geometry

 		
 Discrete Geometry

 		
 Surface Mesh

 		
 Volumetric Mesh

 		
 Decals (Vulkan only)

 		
 Rendering

 		
 Render Material System

 		
 Texture Manager

 		
 VTK Backend

 		
 Vulkan Backend

 		
 Lights

 		
 Directional Lights

 		
 Point Lights

 		
 Spot Lights

 		
 Image-Based Lighting (Vulkan only)

 		
 Collision Detection

 		
 Collision Handling

 		
 Physics

 		
 3D Deformable Objects

 		
 Cloth

 		
 Fluids

 		
 Rigid Body Dynamics

 		
 Computational Algebra

 		
 Direct Linear Solvers

 		
 Iterative Linear Solvers

 		
 External Devices

 		
 Audio

 		
 Haptic Rendering

 		
 Miscellaneous Topics

 		
 Object Controllers

 		
 Event Handling

 		
 File Formats

 		
 I/O

 		
 Format Check

 		
 Utilities

 		
 Walk-through Example

 		
 Bibliography

 		
 Releases

 		
 Release 1.0.0

 		
 Apache License

 		
 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 		
 1. Definitions.

 		
 2. Grant of Copyright License.

 		
 3. Grant of Patent License.

 		
 4. Redistribution.

 		
 5. Submission of Contributions.

 		
 6. Trademarks.

 		
 7. Disclaimer of Warranty.

 		
 8. Limitation of Liability.

 		
 9. Accepting Warranty or Additional Liability.

 		
 APPENDIX: How to apply the Apache License to your work

_static/up-pressed.png

_static/up.png

_static/plus.png

